Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering.

نویسندگان

  • Jung-Pil Lee
  • Dongchang Chen
  • Xiaxi Li
  • Seungmin Yoo
  • Lawrence A Bottomley
  • Mostafa A El-Sayed
  • Soojin Park
  • Meilin Liu
چکیده

Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy (SERS) with a large enhancement factor (EF). A highly reliable SERS effect was demonstrated using Rhodamine 6G (R6G) molecules and a thin film of gadolinium doped ceria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AFRL-AFOSR-JP-TR-2016-0104 Synthetic Approach to Controlled Assembly of Metal Nanoparticles

The aim of this one-year project is to develop synthetic methods to form well-defined colloidal assemblies of metal nanoparticles and to understand their unique optical properties focusing on magnetic resonance scattering and surface enhanced Raman scattering (SERS). Our synthetic approach is based on the templated surfactant-assisted seed growth method, where polymer particles decorated with s...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.

Surface-enhanced Raman scattering (SERS) has been considered as a promising sensing technique to detect low-level analytes. However, its practical application was hindered owing to the lack of uniform SERS substrates for ultrasensitive and reproducible assay. Herein, inspired by the natural cactus structure, we developed a cactus-like 3D nanostructure with uniform and high-density hotspots for ...

متن کامل

Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity.

We demonstrate a reusable and reconfigurable surface enhanced Raman scattering (SERS) platform by optically trapping Ag nanoparticles with a photonic crystal cavity integrated with a microfluidic chip. High-performance SERS is performed in a very reproducible manner, owing to the fact that Ag aggregates are produced by optical trapping in a controllable process that is monitored in real-time by...

متن کامل

Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.

Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 23  شماره 

صفحات  -

تاریخ انتشار 2013